Creating Formal
Specifications of Real
World Artifacts

Alastair Reid

Arm Research
@alastair_d_reid

Overview

1. What's different about Real World Artifacts?

2. ARM’s formal processor specifications

e Three experiences

e Le

ssons learned

3. Conclusions

2

© 2017 Arm |

“Trustworthy Specifications of the ARM v8-A and v8-M architecture,” FMCAD 2016
“End to End Verification of ARM processors with ISA Formal,” CAV 2016
“Who guards the guards? Formal Validation of ARM v8-M Specifications,” OOPSLA 2017

mited https://alastairreid.github.io/papers/,

arm

https://alastairreid.github.io/papers/

ARM

Designs processors

Designs architecture

Licenses architecture

16B processors / year

(also GPUs, loT, ...)

3 © 2017 Arm Limited

arm

Real World Artifacts

Linux Kernel, C compilers, ARM processors, TCP/IP, WiFi, etc.

- Multiple implementations, suppliers, versions, configurations

- Important: commercial, security, ...

- Long history, initial spec informal

- Formal spec not 100% welcome

- Backwards compatibility requirements

- Spec must include all quirks of recent versions of major implementations to be useful

- Conformance suites?

4 © 2017 Arm Limited q rm

Current status of ARM specifications

- Formal specifications of A, R and M-class processor classes exist

- Integrated into ARM'’s official processor specifications

- Maintained by ARM’s architecture team

- Used by multiple teams within ARM
- Formal validation of ARM processors using Bounded Model Checking
- Development of test suites
- Designing architecture extensions

- Publicly released in machine readable form

5 © 2017 Arm Limited q rm

+ 4 + + + + + +

“Trustworthy Specifications of the ARM v8-A and v8-M architecture,” FMCAD 2016

+ + + + + + + +

+ + + + + + + +

Creating trustworthy

specifications

© 2017 Arm Limited
+ + 4 4 + i 4 4

arm

The state of most processor specifications

Large (1000s of pages)

Broad (10+ years of implementations, multiple manufacturers)
Complex (exceptions, weak memory, ...)

Informal (mostly English prose)

Pseudocode (10000s of lines)

We are all just learning how to (retrospectively) formalize specifications

7 © 2017 Arm Limited q rm

Unstructured English Prose (A-class spec)

8

Concurrent modification and execution of instructions

The ARMVS architecture limits the set of instructions that can be executed by one thread of execution as they are
being modified by another thread of execution without requiring explicit synchronization.

Concurrent modification and execution of instructions can lead to the resulting instruction performing any behavior
that can be achieved by executing any sequence of instructions that can be executed from the same Exception level,
except where each of the instruction before modification and the instruction after modification is one of a B, BL, BRK,
HVC, ISB, NOP, SMC, or SVC instruction.

For the B, BL, BRK, HVC, ISB, NOP, SMC, and SVC instructions the architecture guarantees that, after modification of the
instruction, behavior is consistent with execution of either:

. The instruction originally fetched.
. A fetch of the modified instruction.

If one thread of execution changes a conditional branch instruction, such as B or BL, to another conditional instruction
and the change affects both the condition field and the branch target, execution of the changed instruction by another
thread of execution before the change is synchronized can lead to either:

. The old condition being associated with the new target address.
. The new condition being associated with the old target address.

These possibilities apply regardless of whether the condition, either before or after the change to the branch
instruction, is the a/lways condition.

© 2017 Arm Limited

arm

Semi-structured English prose (M-class spec)

Ryrjc Exit from lockup is by any of the following:
. A Cold reset.
. A Warm reset.

. Entry to Debug state.

. Preemption by a higher priority exception.
Rvenw Entry to lockup from an exception causes:
. Any Fault Status Registers associated with the exception to be updated.
. No update to the exception state, pending or active.
. The PC to be set to OxEFFFFFFE.
. EPSR.IT to be become UNKNOWN.

In addition, HFSR.FORCED 1s not set to 1.
9 2017 Arm Limited q rm

Tables - semistructured, not machine readable

Table B2-1 Encoding of the DMB and DSB <option> parameter

Accesses Shareability domain

5::::: the ﬁ::_:;:‘e Full system Outer Shareable Inner Shareable Non-shareable
Reads and writes ~ Reads and writes ~ SY OSH ISH NSH

Writes Writes ST OSHST ISHST NSHST

Reads Reads and writes LD OSHLD ISHLD NSHLD

© 2017 Arm Limited

arm

Registers - structured, machine-readable

QC

31 30 29 28 27 26 8 76 543210

N

Z

C

\Y

RESO

N, bit [31]

Z, bit [30]

T L

DZC
OFC
UFC
IXC
RESO
IDC

Negative condition flag for AArch32 floating-point comparison operations. A Arch64 floating-point
comparisons set the PSTATE.N flag instead.

Zero condition flag for AArch32 floating-point comparison operations. AArch64 floating-point
comparisons set the PSTATE.Z flag instead.

Pseudocode

ADC{S}<C> <Rd>,<Rn>,<Rm>{,<shift>}
3130202827 262524232221 2019181716 151413 121110 9 8 7 6 5 4 3 2 1 0O
cond 0O 0{0O)j0 1 0 I|S Rn Rd imm3 type [0 Rm

if Rd == *1111" && S — ‘1" then SEE SUBS PC, LR and related instructions;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == ‘1");
(shift_t, shift_n) - DecodeImmShift(type, imm5);

if ConditionPassed() then
EncodingSpecificOperations();
shifted - Shift(R[m], shift_t, shift_n, APSR.C);
(result, carry, overflow) - AddWithCarry(R[n], shifted, APSR.C)
if d == 15 then // Can only occur for ARM encoding
ALUWritePC(result); // setflags is always FALSE here
glse
R[d] = result;
if setflags then
APSR.N = result<3ls;
APSR.Z - IsZeroBit(result);
APSR.C - carry;
APSR.V - overflow;

12 © 2017 Arm Limited q rm

Pseudocode

Type Inference

ADC{S}<C> <Rd>,<Rn>,<Rm>{,<shift>}

3130202827 262524232221 2019181716 1514131211109 8 7 6 5 4 3 2 1 0 Unbounded Integers
cond 0O 0{0O)j0 1 0 I|S Rn Rd imm> type [0 Rm
Enumerations
if Rd == *1111° S == ‘1" then SEE SUBS PC, LR and related instructions;
d = UInt(Rd); n = UInt(Rn); m= . (S == *‘1"):
(shift_t, shift_n) - DecodeImmShift(type, imm5); Bit Vectors

if ConditionPassed() then
EncodingSpecificOperations();
shifted - Shift(R[m], shift_t, shift_n, APSR.C);
(result, carry, overflow) - AddwithCarry(R[n], shifted, APSR.(C)
if d == 15 then // Can only occur for ARM encodin
ALUWritePC(result); // setflags is always

Indentation-based Syntax

Dependent Types

glse
R[d] = result;

if se n Imperative
APSR.N = result<3l>;
APSR.Z = IsZeroBit(result);

APSR.C - carry; Exceptions
APSR.V = overflow;

12 © 2017 Arm Limited q rm

Status at the start

13

No tools (parser, type checker)

Incomplete (around 15% missing)

“Document by comment”

Many trivial errors (that confuse tools but not humans)
Unexecuted, untested

Scepticism that executing spec is

- Possible

- Desirable

- Would compromise important aspects of specification

© 2017 Arm Limited

arm

Architectural Conformance Suite

Processor architectural compliance sign-off

Large
e v8-A 11,000 test programs, > 2 billion instructions

e v8-M 3,500 test programs, > 250 million instructions

Thorough

e Tests dark corners of specification

14 2017 Arm Limited q rm

Progress in testing Arm specification

- Does not parse, does not typecheck
- Can’t get out of reset

. - Can’t execute first instruction
- Can’t execute first 100 instructions

50

- Passes 90% of tests

0 - Passes 99% of tests

© 2017 Arm Limited q rm

Measuring architecture coverage of tests

Untested: op1*op2 == -3.0, FPCR.RND=-Inf

bits(N) FPRSqrtStepFused(bits(N) opl, bits(N) op2)
assert N IN {32, 64}:
bits(N) result;
opl = FPNeg(opl); // per FMSUB/FMLS
(tvpel.signl valuel) = FPUnpack(opl, FPCR);
(tvpe2.sign2 value2) = FPUnpack(op2, FPCR);
(done result) = FPProcessNaNs(typel, tvpe2. opl, op2, FPCR);
if !done then
infl = (typel == FPType_Infinity);
inf2 = (type2 == FPType_Infinity);
zerol = (tvpel == FPType_Zero);
zero2 = (tvpe2 == FPType_Zero);
if (infl && zero2) || (zerol && inf2) then
result = FPOnePointFive('0");
elsif infl || inf2 then
result = FPInfinity(signl EOR sign2, N);
else
// Fully fused multiply-add and halve
result_value = (3.0 + (valuel * value2)) / 2.0;
if result_value == 0.0 then
// Sign of exact zero result depends on rounding mode
sign = if FPCRRounding() == FPRounding NEGINF then 'l' else '0';
result = FPZero(sign, N);
else
result = FPRound(result_value, FPCRRounding()):
return result;

16 © 2017 Arm Limited q rm

Ilrlr

Creating a Virtuous Cycle

ARM

Random Information
, Conformance

Instruction . Flow
TestSuite .

Sequences /_\ Analysis

Speciﬁcation Processor
Veriﬁcation Spec Veriﬁcation

Boot Fuzzing Testcas.e

0OS Firmware Generation

ARMResearch The Architecture for the Digital VWorld® ARM

17

Lessons (Part 1)

- Specifications contain bugs
- Huge value in being able to run existing test suites
- Need to balance against benefits of non-executable specs
- Find ways to provide direct benefit to other users of spec
- They will do some of the testing/debugging for you
- They will support getting your changes/spec adopted as master spec

- Creates Virtuous Cycle

18 © 2017 Arm Limited q rm

4 4 + + 4

“End to End Verification of ARM processors with ISA Formal,” CAV 2016

+ + + + +

+ + + + +

Formal validation
of processors

© 2017 Arm Limited
+ 4 4 4 +

+

+

+

4

+

arm

Formal/Testing framework (deterministic specs)

Implementation
[SﬁmuMs ?==7 j
Specification

Test vectors
Bounded model checker

20 © 2017 Arm Limited q rm

Formal/Testing framework (non-deterministic specs)

Implementation j\
[Stimulus

Specification j

21 © 2017 Arm Limited q rm

eeeeee

Checking an instruction

ADD

The Architecture for the Digital VWorld® ARM

eeeeee

Checking an instruction

CMP LDR| ADD | STR BNE

N

Context

The Architecture for the Digital VWorld® ARM

Specifying ADD

1514131211109 8 7 6 5 4 3 2 1 0
0O 001 110[{0] Rm Rn Rd

assign ADD_retiring = (pre.opcode & 16'b1111_1110_0000_0000)

== 16'p0001_1000_0000_0000;
assign ADD_result = pre.R[pre.opcode[8:6]] + pre.R[pre.opcode[5:3]];
assign ADD_Rd = pre.opcode[2:0];

assert property (@(posedge clk) disable iff (~reset_n)
ADD _retiring |-> (ADD_result == post.R[ADD_Rd]));

ARMResearch The Architecture for the Digital World® ARM

23

4 N

Arch.itectl.,lre ASL. to Combil?ational
Specification Verilog Verilog
_ J
Specialize

Monomorphize
Constant Propagation
Width Analysis
Exception Handling

ARMResearch » The Architecture for the Digital VWorld® ARM

Arm CPUs verified with ISA-Formal

f A-class R-class M-class \

Cortex-A53 Cortex-R52 Cortex-M4
Cortex-A32 Next generation Cortex-M7
Cortex-A35 Cortex-M33
Cortex-A55 Next generation

k Next generation Cambridge Projects /

Rolling out globally to other design centres

Sophia, France - Cortex-A75 (partial)
Austin, USA - TBA

Chandler, USA - TBA
25 © 2017 Arm Limited q rm

Lessons Learned (part 2)

- Very effective way to find bugs in implementations

- Very effective at finding bugs in spec
- Try to find most of the bugs in your spec before you start

- Huge value in being able to use spec to validate implementations
- Helps get formal spec adopted as part of official spec

- Justifies investment in spec by implementors

26 © 2017 Arm Limited

arm

+ 4 + + + + + +

“Who guards the guards? Formal Validation of ARM v8-M Specifications” OOPSLA 2017

Formal validation

of specifications |

arm

© 2017 Arm Limited
+ + 4 4 + i 4 4

One Specification to rule them all?

Compliance Tests

Architecture Spec

Processors

Reference Simulator

28 © 2017 Arm Limited q r m

One Specification to rule them all?

Pro
- Authoritative

- Easier to maintain

Con
- No redundancy

- Extending specification is harder

29 © 2017 Arm Limited q r m

Creating a redundant specification

Where to get a list of redundant properties from?
How to formalise this list?

How to formally validate specification against properties?

(This may look familiar from formal specification of software)

30 © 2017 Arm Limited q r m

Rule JRJC
Exit from lockup 1s by any of the following:
* A Cold reset.
A Warm reset.
* Entry to Debug state.
* Preemption by a higher priority processor exception.

arm

Rule R

State Change X 1s by any of the following:
* Event A
e Event B

e State Change C
e Event D

31 ©2017ArmlL imited q rm

Rule R

State Change X 1s by any of the following:
e Event A
e Event B

e State Change C
e Event D

And cannot happen any other way

arm

Rule R

State Change X 1s by any of the following:
e Event A
e Event B

e State Change C
e Event D

And cannot happen any other way

RuleR: X—->AvBvCvD

arm

State Change X

Event A

Event B

State Change C

Event D

32 © 2017 Arm Limited

Exit from lockup

A Cold reset
A Warm reset

Entry to Debug state

Preemption by a higher
priority processor
exception

Fell(LockedUp)

Called(TakeColdReset)
Called(TakeReset)

Rose(Halted)

Called(ExceptionEntry)

arm

“Eyeball Closeness”

Rule JRJC
Exit from lockup 1s by any of the following:
* A Cold reset.
* A Warm reset.
 Entry to Debug state.

* Preemption by a higher priority processor
exception.

Fell(LockedUp) - Called(TakeColdReset)
v Called(TakeReset)

v Rose(Halted)

v Called(ExceptionEntry)
33 © 2017 Arm Limited q rm

Rule VGNW
Entry to lockup from an exception causes

« Any Fault Status Registers associated with the exception
to be updated.

Out of date +(No update to the exception state, pending or active.)
Misleading «(The PC to be set to 0OXEFFFFFFE.)

Untestable «(EPSR.IT to become UNKNOWN.)

Ambiguous (In addition, HFSR.FORCED is not set to 1.)

34 © 2017 Arm Limited q rm

~10,000 lines

v8-M Spec

Rules

.

35 © 2017 Arm Limited

Convert

<

Counterexample

~1,000,000 lines

arm

Results (more in OOPSLA paper)

Most properties proved in under 100 seconds

Found 12 bugs in specification:

- debug, exceptions, system registers, security

Found bugs in English prose:

- ambiguous, imprecise, incorrect, ...

36 ©2017ArmL imited q rm

Lessons Learned (part 3)

- Redundancy essential for detecting errors
- Need set of ‘orthogonal’ properties

- Invariants

- Security properties

- Reachability properties

- etc.

- Eyeball closeness

37 © 2017 Arm Limited q rm

Creating Formal Specifications of Real World Artifacts

Plan for adoption into official specs

Test your specification
Build a virtuous cycle \ /\ 4

- What is “killer app” of your spec?

Formally validation of implementations? Spec

- Look for early adopters %
- Ensure specifications have many uses

Don’t write spec in Coq/HOL/ACL2/...

Create redundant specifications
38 © 2017 Arm Limited qrm

Thank You! @alastair_d_reid

Danke!
arm

Mercil
159 157 |
HL)DED!

G ra C | a S I “Trustworthy Specifications of the ARM v8-A and v8-M architecture,” FMCAD 2016
: “End to End Verification of ARM processors with ISA Formal,” CAV 2016
Ki |tOS I “Who guards the guards? Formal Validation of ARM v8-M Specifications,” OOPSLA 2017

© 2017 Arm Limited

