
Status Report

Karthikeyan Bhargavan1, Abhishek Bichhawat2,
Quoc Huy Do3, Daniel Fett3, Ralf Küsters3, Guido Schmitz3

1: INRIA, France
2: Carnegie Mellon University, USA
3: University of Stuttgart, Germany

Formal Analysis of Web Security

OSW 2018 Bhargavan, Bichhawat, Do, Fett, Küsters, Schmitz 2

Contents

Previous Work:
Generic formal pen-and-paper

model and proofs

Plan:
Mechanized

model and proofs

● Comprehensive model in focus
● Not constrained by tools
● Not necessarily easy to use tools

● Automation
● Executable model
● Testing

OSW 2018 Bhargavan, Bichhawat, Do, Fett, Küsters, Schmitz 3

Previous Work

● Development of a generic and comprehensive formal model of the web
infrastructure
(more details later)

● Formal analysis of Mozilla’s BrowserID
Main design goal: privacy
– Found severe attacks: Identity Injection Attack, PostMessage-Based Attack,
– Proposed fxes for authentication and proved security
– Privacy broken beyond repair

● Designed our own new SSO system: SPRESSO (https://spresso.me)
Provably provides strong authentication and privacy properties.

[SP 2014, ESORICS 2015, CCS 2015, CCS 2016, CSF 2017]

OSW 2018 Bhargavan, Bichhawat, Do, Fett, Küsters, Schmitz 4

Previous Work

● Analysis of OAuth 2.0
– Found attacks: 307 Redirect Attack, IdP Mix-Up Attack, State Leak Attack, Naive

RP Session Integrity Attack
– Proposed fxes and proved security

● OpenID Connect 1.0 with Discovery and Dynamic Registration Extensions
– Developed formal model of the standard
– Proposed security guidelines mitigating known attacks
– Proved security for (fxed) standard

All details: TR available at https://sec.uni-stuttgart.de

[SP 2014, ESORICS 2015, CCS 2015, CCS 2016, CSF 2017]

Let's also discuss:
Current state of fxes

[draft-ietf-oauth-mix-up-mitigation-01]
[draft-ietf-oauth-security-topics-04]

OSW 2018 Bhargavan, Bichhawat, Do, Fett, Küsters, Schmitz 5

Formal Analysis of Web Applications and Standards

Browser
Browser

DNS

Server

Server

Server

Browser

Browser

BrowserBrowser

The web is complex ...
● Interaction of diferent components
● Large number of complex standards developed

at a high pace by many separate organizations

... and web applications as well ...
● Increasing complexity of web applications
● Many vulnerabilities

Formal methods enable us to …
● develop a coherent model of core aspects of the web
● precisely specify security properties
● carry out security proofs

OSW 2018 Bhargavan, Bichhawat, Do, Fett, Küsters, Schmitz 6

Web-
Attacker

Web-
Attacker

Network Model

Network

Browser

DNS

Web-
Server

Web-
Server

Web-
Server

Browser

Browser

DNS

Network-
Attacker

OSW 2018 Bhargavan, Bichhawat, Do, Fett, Küsters, Schmitz 7

tab

Web Browser Model

tab

iframe iframeiframe iframe

tab

Including …
● DNS, HTTP, HTTPS
● window & document structure
● scripts
● attacker scripts
● web storage & cookies
● web messaging & XHR
● message headers
● redirections
● security policies
● dynamic corruption
● ...

Origin: https://example.com

OSW 2018 Bhargavan, Bichhawat, Do, Fett, Küsters, Schmitz 8

Browser Model - Example

OSW 2018 Bhargavan, Bichhawat, Do, Fett, Küsters, Schmitz 9

Security Property – OIDC

● Authentication: a network attacker (and therefore also web attackers)
should be unable to log in as an honest user at an honest RP using an
honest IdP.

● Authorization: a network attacker should not be able to obtain or use a
protected resource available to some honest RP at an IdP for some user
unless certain parties involved in the authorization process are corrupted

● Session integrity: an attacker should be unable to forcefully log a
user/browser in at some RP

OSW 2018 Bhargavan, Bichhawat, Do, Fett, Küsters, Schmitz 10

Authentication Property of OIDC

Browser rp.com idp.com

1. "Login with idp.com."

2. user authentication

3. redirect to rp.com with ID Token IT, Access Token AT

4. send IT, AT

6. logged in

OSW 2018 Bhargavan, Bichhawat, Do, Fett, Küsters, Schmitz 11

Authentication Property of OIDC – Formal Defnition

OSW 2018 Bhargavan, Bichhawat, Do, Fett, Küsters, Schmitz 12

Limitations

● No language details
● No user interface details
● No byte-level attacks (e.g., bufer overfows)
● Abstract view on cryptography and TLS

(Dolev-Yao Model)

OSW 2018 Bhargavan, Bichhawat, Do, Fett, Küsters, Schmitz 13

Limitations

● Main limitation: pen-and-paper model and proof
– Laborious
– Error-prone
– Non-executable

OSW 2018 Bhargavan, Bichhawat, Do, Fett, Küsters, Schmitz 14

Contents

Previous Work:
Generic formal pen-and-paper

model and proofs

Plan:
Mechanized

model and proofs

● Comprehensive model in focus
● Not constrained by tools
● Not necessarily easy to use tools

● Automation
● Executable model
● Testing

OSW 2018 Bhargavan, Bichhawat, Do, Fett, Küsters, Schmitz 15

Mechanizing Model and Proofs: Approaches

● Fully automatic tools (ProVerif, Tamarin, Avispa)
– Need more abstraction
– Not adequate for a comprehensive model (complex data structure)

● Theorem prover-based approach
– More precise
– Can require user’s interaction
– More adequate for comprehensive model

OSW 2018 Bhargavan, Bichhawat, Do, Fett, Küsters, Schmitz 16

What is F*?

● Functional programming language aimed at program verifcation
● Type system for specifying properties
● SMT Solver Z3 as the backend
● F* program can be translated to OCaml, F#, C, or JS

OSW 2018 Bhargavan, Bichhawat, Do, Fett, Küsters, Schmitz 17

How F* Works

F* program
+ specifcation

(refnement type,
lemma)

SMT
problems

Normalization

Predicate
transformer

SMT solving (Z3) Can be
proven?

success Program
meets

specifcation

fail

Program
does not meet
specifcation

SMT Solver
needs help

Add helper lemmas

OSW 2018 Bhargavan, Bichhawat, Do, Fett, Küsters, Schmitz 18

Why F*?

● Seems adequate for encoding our comprehensive model
– Pure functional programming language
– Sufcient for modeling complex data structures (browsers, servers)
– Rich, versatile type system expressing precise, compact security properties
– Powerful type checker enables some automation
– Translation into executable code (also for sanity check, testing)

● Actively supported
● Strength proven in practice (TLS)

OSW 2018 Bhargavan, Bichhawat, Do, Fett, Küsters, Schmitz 19

F* - Simple Example

val factorial: int -> int

let rec factorial n =

if n<=1 then 1 else n * (factorial (n-1))

OSW 2018 Bhargavan, Bichhawat, Do, Fett, Küsters, Schmitz 20

F* - Simple Example

val factorial: n:int{n>=0} -> x:int{x>=0}

let rec factorial n =

if n<=1 then 1 else n * (factorial (n-1))

val factorial_lemma: n:int{n>2} -> Lemma (factorial n >n)

let factorial_lemma n = ()

OSW 2018 Bhargavan, Bichhawat, Do, Fett, Küsters, Schmitz 21

F* - Simple Example

val factorial: n:int{n>=0} -> x:int{x>=0}

let rec factorial n =

if n<=1 then 1 else n * (factorial (n-1))

val factorial_lemma: n:int{n>2} -> Lemma (factorial n >n)

let rec factorial_lemma n = match n with

|3 -> ()

|_ -> factorial_lemma (n-1)

OSW 2018 Bhargavan, Bichhawat, Do, Fett, Küsters, Schmitz 22

F* - Simple Example

● Demo

OSW 2018 Bhargavan, Bichhawat, Do, Fett, Küsters, Schmitz 23

Working Plan

Web standards

FKS model
(paper-based)OAuth/OIDC

FKS model
in F*

OAuth/OIDC
modeled
in F*

Mechanized
proofs

Executable,
verifed code

OAuth/OIDC
model

(paper-based)

OSW 2018 Bhargavan, Bichhawat, Do, Fett, Küsters, Schmitz 24

Conclusion

Previous Work:
Generic formal pen-and-paper

model and proofs

Plan:
Mechanized

model and proofs

● Comprehensive model in focus
● Not constrained by tools
● Not necessarily easy to use tools

● Automation
● Executable model
● Testing

Thank you!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

