
© 2018 ForgeRock. All rights reserved.

Misuse-resistant crypto
for JOSE/JWT

Neil Madden
OAuth Security Workshop, 2018

1

© 2018 ForgeRock. All rights reserved.

JOSE Content Encryption Methods
• Provide authenticated encryption
• AES-CBC with HMAC-SHA2

• Requires random 128-bit IV
• Must be unpredictable

• AES-GCM
• Requires 96-bit nonce
• Nonce can be a simple counter

• Most modern textbooks would recommend GCM: fast, dedicated
AEAD mode, parallel

© 2018 ForgeRock. All rights reserved.

GCM

• Galois Counter Mode
• CTR-mode for privacy
• GHASH for authentication

• Simple! :-)

By NIST (http://en.wikipedia.org/wiki/File:GCM.png) [Public domain], via Wikimedia Commons

© 2018 ForgeRock. All rights reserved.

What happens if you reuse a nonce?
• NIST SP-800-38D on GCM: 
 
“An important caution to the use of GCM is that a breach of the
requirement in Sec. 8 for the uniqueness of the initialization
strings may compromise the security assurance almost
entirely”  
 
“In practice, this requirement is almost as important as the
secrecy of the key.”

© 2018 ForgeRock. All rights reserved.

Nonce reuse attacks on GCM
• If a nonce is reused for the same key just once, results are

catastrophic:
• Recover information about encrypted plaintexts
• Recover authentication sub-key
• Produce arbitrary forgeries of associated data
• Can often produce forgeries of encrypted ciphertext too: 
 
{“sub”: “peter”, … } ➡ {“sub”: “admin”, … }

© 2018 ForgeRock. All rights reserved.

Nonce reuse in reality
• KRACK attacks against WPA2
• Forced nonce reuse by weaknesses in protocol 
 
“If the victim uses […] GCMP encryption protocol, instead of AES-
CCMP, the impact is especially catastrophic. Against these
encryption protocols, nonce reuse enables an adversary to
not only decrypt, but also to forge and inject
packets.” (krackattacks.com)

http://krackattacks.com

© 2018 ForgeRock. All rights reserved.

How to avoid?
• NIST recommends either:

1. Use random IV
2. Use deterministic counter

• Both can be problematic
• Failures of RNG, e.g. SSH keys generated too soon on first boot,

Android SecureRandom failures leading to BitCoin wallet
compromise, IoT devices

• Counters are hard to synchronise across servers
• Only 96-bit IV

© 2018 ForgeRock. All rights reserved.

Is CBC/HMAC better?
• Yes and no
• CBC has its own problems:

• Padding oracle attacks
• If IV is predictable then plaintext can be recovered (BEAST)
• Worse security bounds than CTR mode

• Unpredictable IV is a more strict requirement than non-repeating
nonce

• HMAC prevents some of these attacks, but not necessarily all –
e.g., if attacker can inject plaintext via logon username

© 2018 ForgeRock. All rights reserved.

A safer alternative
• Misuse Resistant Authenticated Encryption (MRAE)
• Developed by Rogaway & Shrimpton while analysing AES

KeyWrap
• When unique nonce used then has same properties as GCM,

CBC+HMAC, etc: authenticated encryption
• If nonce is reused then loses a minimum amount of security:

• Authenticity is not compromised at all
• Privacy only (slightly) compromised if the the same message is

encrypted with same key, nonce, and associated data.

© 2018 ForgeRock. All rights reserved.

Synthetic IV (SIV)

Algorithm SIV-EncryptH1,...,Ht
K1 K2 (M)

if t ≥ n−1 then return ⊥
IV← CMAC∗

K1(H1, . . . , Ht, M)
C ← CTRK2(IV,M)
return IV ∥ C

Algorithm CMAC∗
K(X1, . . . , Xm)

S ← CMACK(0n)
for i← 1 tom− 1 do S ← dbl(S) ⊕ CMACK(Xi)
if |Xm| ≥ n

then return CMACK(S ⊕ end Xm)
else return CMACK(dbl(S) ⊕ Xm10∗)

Algorithm SIV-DecryptH1,...,Ht
K1 K2 (C)

if t ≥ n−1 or |C| < n then return ⊥
IV← C[1 .. n], C ← [n + 1 .. |C|]
M ← CTRK2(IV, C)
IV′ ← CMAC∗

K1(H1, . . . , Ht, M)
if IV = IV′ then returnM else return ⊥

Algorithm CTRK(IV, M)
Ctr ← IV & 1n−64 0131 0131

Pad ← EK(Ctr) EK(Ctr+1) EK(Ctr+2) · · ·
returnM ⊕ Pad [1..|M |]

M

CIV

CTRK2

CMACK1

 IV’ if =

Hm M

CIV

H1 ...

...

HmH1 ...

...

*

CTRK2

CMACK1
*

CMACK

Y1

H1 MH2

Y2 IV

T

end

Y1

M

Y2 IV

T

10*H1 H2

dbl dbl

dbl

dbl

CMACK (0)

dbl

CMACK CMACK

CMACK (0)

CMACK CMACK CMACK

Figure 1: Top: Definition of SIV mode. Middle: Illustration of encryption (left) and decryption (right). Bottom:
Illustration of CMAC∗ when the final argument has n or more bits (left) and when it does not (right).

2

• Achieves MRAE
• Basic idea: use MAC of

associated data (header) and
plaintext as the IV for
encryption

• AES-SIV: MAC is AES-
CMAC, encryption is AES-
CTR

• RFC 5297
From http://web.cs.ucdavis.edu/~rogaway/papers/siv.pdf

http://web.cs.ucdavis.edu/~rogaway/papers/siv.pdf

© 2018 ForgeRock. All rights reserved.

Advantages
• Simple and provably secure scheme
• Original AES-SIV only uses AES in encrypt direction: efficient on

constrained devices (similar to AES-CCM)
• Can substitute other MACs and ciphers (with some caveats)

• For instance, HMAC, PMAC (parallel), Blake2 etc
• Other (stream) ciphers, e.g. XSalsa20/XChaCha20
• About to be published by IRTF (CFRG): AES-GCM-SIV

• Versatile: content encryption, key-wrapping, deterministic encrypt
• Subjective: Well-respected mode amongst cryptographers

© 2018 ForgeRock. All rights reserved.

Disadvantages
• Must make two passes over the input
• Cannot be streamed
• If no unique value in header then completely deterministic
• Not great for low-entropy inputs (e.g., passwords)

• On the other hand:
• Many JOSE inputs are small (JWTs)
• Decryption cannot (safely) be streamed in any case
• Few encryption schemes are secure for passwords

© 2018 ForgeRock. All rights reserved.

Proposed new modes

• JWE IV should be a random 128-bit value
• Fixed IV for -KW variants

“enc” “alg”
A128SIV A128SIVKW

A128SIV-HS256 A128SIVKW-HS256

A192SIV-HS384 A192SIVKW-HS384

A256SIV-HS512 A256SIVKW-HS512

© 2018 ForgeRock. All rights reserved.

Code (Java + Bouncy Castle)
byte[] iv = secureRandomBytes(16);

Mac cmac = Mac.getInstance(“AESCMAC”);

cmac.init(macKey);

cmac.update(ascii(b64url(header) + “..” + b64url(iv) + ‘.’));

byte[] siv = cmac.doFinal(plaintext);  

Cipher aes = Cipher.getInstance(“AES/CTR/NoPadding”);

aes.init(Cipher.ENCRYPT_MODE, encKey,  
 new IvParameterSpec(siv));  
byte[] ciphertext = aes.doFinal(plaintext);

© 2018 ForgeRock. All rights reserved.

Code - Key Wrap
byte[] iv = secureRandomBytes(16);

Mac cmac = Mac.getInstance(“AESCMAC”);

cmac.init(macKey);

cmac.update(ascii(“A128SIV..."));

byte[] siv = cmac.doFinal(cek);  

Cipher aes = Cipher.getInstance(“AES/CTR/NoPadding”);

aes.init(Cipher.ENCRYPT_MODE, encKey,  
 new IvParameterSpec(siv));  
byte[] ciphertext = aes.doFinal(cek);

© 2018 ForgeRock. All rights reserved.

Misuse of other JOSE algorithms?
• Signatures mostly ok apart from ES ones

• Nonce reuse for NIST ECDSA led to Playstation 3 hack,
Bitcoin theft, etc.

• Use RFC 6979 or EdDSA
• Public key encryption

• Less of a problem?
• Hedged PKE

• Password-based encryption can be hedged by increasing rounds
(maybe consider memory-hard hash algorithms: Scrypt, Argon2)

© 2018 ForgeRock. All rights reserved.

Internet Draft
• https://tools.ietf.org/html/draft-madden-jose-siv-mode-02
• 03 coming soon…
• What variants to support?

• Just AES-SIV?
• HMAC variants?
• AES-GCM-SIV?
• A non-AES alternative (e.g., XChaCha20-HS384-SIV)?

• Would OAUTH WG adopt this?

https://tools.ietf.org/html/draft-madden-jose-siv-mode-02

© 2018 ForgeRock. All rights reserved. 18

Thank You

