Misuse-resistant crypto for JOSE/JWT

Neil Madden
OAuth Security Workshop, 2018

JOSE Content Encryption Methods

- Provide authenticated encryption
- AES-CBC with HMAC-SHA2
 - Requires random 128-bit IV
 - Must be unpredictable
- AES-GCM
 - Requires 96-bit nonce
 - Nonce can be a simple counter
- Most modern textbooks would recommend GCM: fast, dedicated AEAD mode, parallel

GCM

- Galois Counter Mode
- CTR-mode for privacy
- GHASH for authentication

• Simple! :-)

By NIST (http://en.wikipedia.org/wiki/File:GCM.png) [Public domain], via Wikimedia Commons

What happens if you reuse a nonce?

NIST SP-800-38D on GCM:

"An important caution to the use of GCM is that a breach of the requirement in Sec. 8 for the uniqueness of the initialization strings may compromise the security assurance almost entirely"

"In practice, this requirement is almost as important as the secrecy of the key."

Nonce reuse attacks on GCM

- If a nonce is reused for the same key just once, results are catastrophic:
 - Recover information about encrypted plaintexts
 - Recover authentication sub-key
 - Produce arbitrary forgeries of associated data
 - Can often produce forgeries of encrypted ciphertext too:

Nonce reuse in reality

- KRACK attacks against WPA2
- Forced nonce reuse by weaknesses in protocol

"If the victim uses [...] GCMP encryption protocol, instead of AES-CCMP, the impact is especially catastrophic. **Against these** encryption protocols, nonce reuse enables an adversary to not only decrypt, but also to forge and inject packets." (krackattacks.com)

How to avoid?

- NIST recommends either:
 - 1. Use random IV
 - 2. Use deterministic counter
- Both can be problematic
- Failures of RNG, e.g. SSH keys generated too soon on first boot, Android SecureRandom failures leading to BitCoin wallet compromise, IoT devices
- Counters are hard to synchronise across servers
- Only 96-bit IV

Is CBC/HMAC better?

- Yes and no
- CBC has its own problems:
 - Padding oracle attacks
 - If IV is predictable then plaintext can be recovered (BEAST)
 - Worse security bounds than CTR mode
- Unpredictable IV is a more strict requirement than non-repeating nonce
- HMAC prevents some of these attacks, but not necessarily all e.g., if attacker can inject plaintext via logon username

A safer alternative

- Misuse Resistant Authenticated Encryption (MRAE)
- Developed by Rogaway & Shrimpton while analysing AES KeyWrap
- When unique nonce used then has same properties as GCM, CBC+HMAC, etc: authenticated encryption
- If nonce is reused then loses a minimum amount of security:
 - Authenticity is not compromised at all
 - Privacy only (slightly) compromised if the the same message is encrypted with same key, nonce, and associated data.

Synthetic IV (SIV)

- Achieves MRAE
- Basic idea: use MAC of associated data (header) and plaintext as the IV for encryption
- AES-SIV: MAC is AES-CMAC, encryption is AES-CTR
- RFC 5297

From http://web.cs.ucdavis.edu/~rogaway/papers/siv.pdf

Advantages

- Simple and provably secure scheme
- Original AES-SIV only uses AES in encrypt direction: efficient on constrained devices (similar to AES-CCM)
- Can substitute other MACs and ciphers (with some caveats)
 - For instance, HMAC, PMAC (parallel), Blake2 etc
 - Other (stream) ciphers, e.g. XSalsa20/XChaCha20
 - About to be published by IRTF (CFRG): AES-GCM-SIV
- Versatile: content encryption, key-wrapping, deterministic encrypt
- Subjective: Well-respected mode amongst cryptographers

Disadvantages

- Must make two passes over the input
- Cannot be streamed
- If no unique value in header then completely deterministic
- Not great for low-entropy inputs (e.g., passwords)
- On the other hand:
 - Many JOSE inputs are small (JWTs)
 - Decryption cannot (safely) be streamed in any case
 - Few encryption schemes are secure for passwords

Proposed new modes

"enc"	"alg"
A128SIV	A128SIVKW
A128SIV-HS256	A128SIVKW-HS256
A192SIV-HS384	A192SIVKW-HS384
A256SIV-HS512	A256SIVKW-HS512

- JWE IV should be a random 128-bit value
- Fixed IV for -KW variants

Code (Java + Bouncy Castle)

```
byte[] iv = secureRandomBytes(16);
Mac cmac = Mac.getInstance("AESCMAC");
cmac.init(macKey);
cmac.update(ascii(b64url(header) + ".." + b64url(iv) + '.'));
byte[] siv = cmac.doFinal(plaintext);
Cipher aes = Cipher.getInstance("AES/CTR/NoPadding");
aes.init(Cipher.ENCRYPT MODE, encKey,
        new IvParameterSpec(siv));
byte[] ciphertext = aes.doFinal(plaintext);
```


Code - Key Wrap

```
byte[] iv = secureRandomBytes(16);
Mac cmac = Mac.getInstance("AESCMAC");
cmac.init(macKey);
cmac.update(ascii("A128SIV..."));
byte[] siv = cmac.doFinal(cek);
Cipher aes = Cipher.getInstance("AES/CTR/NoPadding");
aes.init(Cipher.ENCRYPT MODE, encKey,
        new IvParameterSpec(siv));
byte[] ciphertext = aes.doFinal(cek);
```


Misuse of other JOSE algorithms?

- Signatures mostly ok apart from ES ones
 - Nonce reuse for NIST ECDSA led to Playstation 3 hack, Bitcoin theft, etc.
 - Use RFC 6979 or EdDSA
- Public key encryption
 - Less of a problem?
 - Hedged PKE
- Password-based encryption can be hedged by increasing rounds (maybe consider memory-hard hash algorithms: Scrypt, Argon2)

Internet Draft

- https://tools.ietf.org/html/draft-madden-jose-siv-mode-02
- 03 coming soon…
- What variants to support?
 - Just AES-SIV?
 - HMAC variants?
 - AES-GCM-SIV?
 - A non-AES alternative (e.g., XChaCha20-HS384-SIV)?
- Would OAUTH WG adopt this?

